我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

1990—2019年中国高血清低密度脂蛋白胆固醇疾病负担趋势分析与预测(PDF)

《现代预防医学》[ISSN:1003-8507/CN:51-1365/R]

期数:
2022年14期
页码:
2502-2509
栏目:
流行病与统计方法
出版日期:
2022-07-30

文章信息/Info

Title:
Trend analysis and prediction of disease burden of high level serum low-density lipoprotein cholesterol in China from 1990 to 2019
作者:
袁空军12杨媛12赵创艺12颜丹虹12周光清2
1. 南方医科大学卫生管理学院,广东 广州 510515;
2. 南方医科大学南方医院健康管理中心,广东 广州 510515
Author(s):
YUAN Kong-jun* YANG Yuan ZHAO Chuang-yi YAN Dan-hong ZHOU Guang-qing
*School of Health Management, Southern Medical University, Guangzhou, Guangdong 510515, China
关键词:
高低密度脂蛋白胆固醇疾病负担ARIMANNAR趋势分析
Keywords:
High level low-density lipoprotein cholesterol Disease burden ARIMA NNAR
分类号:
R514.4
DOI:
10.20043/j.cnki.MPM.202112618
文献标识码:
A
摘要:
目的 描述和分析1990—2019年中国高血清低密度脂蛋白胆固醇(high LDL cholesterol,高LDL - C)疾病负担状况及变化趋势,并预测未来5年的疾病负担,为中国高LDL - C科学防控提供依据。方法 提取2019年全球疾病负担(GBD 2019)中因高LDL - C造成的死亡数、死亡率及DALYs等疾病负担指标,相关指标均采用GBD 2019全球标准人口进行年龄标准化,采用平均年度变化百分比(AAPC)分析率的变化趋势,并应用R 4.1.0对1990—2016年中国因高LDL - C造成的死亡率和DALYs率建立ARIMA模型和NNAR模型,用2017—2019年的数据来评价两模型的拟合效果,最后用拟合效果最好的模型预测2020—2024年中国高LDL - C死亡率和DALYs率。结果 1990—2019年中国高LDL - C造成的死亡率(AAPC = 3.1%,P<0.05)和DALYs率(AAPC = 2.2%,P<0.05)整体呈波动上升趋势;标化死亡率和DALYs率增长14.21%和0.56%,男女性别比范围分别为1.33~1.67和1.36~1.76,男性高于女性;年龄别疾病负担≥70岁人群远高于15~49岁和50~69岁群体;ARIMA(0,2,0)和NNAR(1,1)模型预测与实际趋势基本一致,前者预测值与实际值相对误差、均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对百分误差(MAPE)均较小,预测精度更好。 结论 中国高LDL - C造成的疾病负担呈逐渐上升趋势,在2020—2024年将继续上升。男性、高龄人群疾病负担更加沉重,应采取针对性措施进行干预。
Abstract:
Objective To describe and analyze the disease burden status and change trend of high serum low density lipoprotein cholesterol (high LDL-C) in China from 1990 to 2019 and predict the disease burden in the next five years, to provide basis for scientific prevention and control of high LDL-C in China. Methods The disease burden indicators such as number of deaths, mortality and DALYs due to high LDL-C in Global Burden of Disease 2019 (GBD 2019) were extracted and standardized by age using GBD 2019 global standard population. The trend of rate change was analyzed using average annual percentage change (AAPC), and R 4.1.0 was applied to analyze the burden of disease due to high LDL-C from 1990 to 2016 mortality rates and DALYs rates due to high LDL-C in China to build ARIMA models and NNAR models. Data from 2017 to 2019 were used to evaluate the fitting effect of the two models. Finally the best-fitting model was used to predict the rates of high LDL-C mortality and DALYs in China from 2020 to 2024. Results Mortality (AAPC=3.1%, P<0.05) and DALYs rates (AAPC=2.2%, P<0.05) due to high LDL-C in China from 1990 to 2019 showed an overall fluctuating upward trend. The standardized mortality and DALYs rates increased by 14.21% and 0.56%, and the male to female sex ratios ranged from 1.33 to 1.67 and 1.36 to 1.76, respectively, with males higher than females. The age-specific disease burden was much higher in the group aged ≥70 years than in the groups aged 15 to 49 years and 50 to 69 years. The ARIMA (0, 2, 0) and NNAR (1, 1) model predictions were generally consistent with the actual trends. The predicted values by the former model had smaller relative errors, root mean square errors (RMSE), mean absolute errors (MAE) and mean absolute percentage error (MAPE), with better prediction accuracy. Conclusion The disease burden caused by high LDL-C in China is gradually increasing and will continue to rise between 2020 to 2024. The disease burden is heavier in men and the elderly, and targeted measures should be taken to intervene.

参考文献/References

[ 1 ]中国心血管健康与疾病报告编写组.中国心血管健康与疾病报告2019概要[J].中国循环杂志,2020,35(9):833 - 854.The Writing Committee of the Report on Cardiovascular Health Diseases in China. Summary of China cardiovascular health and disease report 2019[J]. Chinese Circulation Journal, 2020, 35(9): 833 - 854.
[ 2 ]Ren J, Grundy SM, Liu J, et al. Long - term coronary heart disease risk associated with very - low - density lipoprotein cholesterol in Chinese: the results of a 15 - Year Chinese Multi - Provincial Cohort Study (CMCS)[J]. Atherosclerosis, 2010, 211(1): 327 - 332.
[ 3 ]Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta - analysis of statin trials[J]. Journal of the American College of Cardiology, 2014, 64(5): 485 - 494.
[ 4 ]Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990 - 2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet (London, England), 2019, 394(1204): 1145 - 1158.
[ 5 ]Global, Regional. And National comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories,1990 - 2017: A systematic analysis for the global burden of disease study 2017[J]. Lancet, 2018, 392(10159): 1923 - 1994.
[ 6 ]陈玲,程丽君,赵向军.恶性肿瘤住院量与住院费用的ARIMA乘积季节模型预测研究[J].中国卫生统计,2017,34(4):554 - 557.Chen L, Cheng LJ, Zhao XJ. ARIMA product season model for predicting number of inpatient and hospitalized expense of malignant tumor[J]. Chinese Journal of Health Statistics, 2017, 34(4): 554 - 557.
[ 7 ]张欣,刘振球,袁黄波,等.神经网络自回归模型在丙肝发病趋势和预测研究中的应用[J].中国卫生统计,2020,37(4):524 - 526.Zhang X, Liu ZQ, Yuan HB, et al. Application of neural network autoregressive model in disease trend and prediction studies of hepatitis C[J]. Chinese Journal of Health Statistics, 2020, 37(4): 524 - 526.
[ 8 ]Anonym. A systematic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1204 - 1222.
[ 9 ]Fertility GA. Mortality,healthy Life expectancy(HALE),and population estimates in 204 countries and territories,1950 - 2019:a comprehensive demographic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1160 - 1203.
[ 10 ]Anon. A systematic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1223 - 1249.
[ 11 ]Anon. Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990 - 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1250 - 1284.
[ 12 ]Global R, national incidence. Prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories,1990 - 2017: A systematic analysis for the global burden of disease study 2017[J]. Lancet, 2018, 392(10159): 1789 - 1858.
[ 13 ]Li Z, Wang Z, Song H, et al. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population[J]. Infection and Drug Resistance, 2019, 12: 1011 - 1020.
[ 14 ]徐晓慧,杨静,王黎君,等.2017年中国人群高血清低密度脂蛋白胆固醇归因疾病负担研究[J].中华流行病学杂志,2020,41(6):839 - 844.Xu XH, Yang J, Wang LJ, et al. Burden of disease attributed to high level serum low - density lipoprotein cholesterol in China in 2017[J]. Chinese Journal of Epidemiology, 2020, 41(6): 839 - 844.
[ 15 ]赵旺,叶平,胡大一,等.根据《中国成人血脂异常防治指南(2016年修订版)》再分析DYSIS - China横断面调查[J].中国心血管杂志,2020,25(1):55 - 61.Zhao W, Ye P, Hu DY, et al. Re - analysis of DYSIS - China cross - sectional survey according to " Chinese guidelines for the prevention and treatment of dyslipidemia in adults (2016 revision)"[J]. Chinese Journal of Cardiovascular Medicine, 2020, 25(1): 55 - 61.
[ 16 ]Stevens W, Peneva D, Jz L, et al.Estimating the future burden of cardiovascular disease and the value of lipid and blood pressure control therapies in China[J]. BMC Health Services Research, 2016, 16: 175.
[ 17 ]宋永健,杜鑫,郑梦伊,等.低密度脂蛋白胆固醇累积暴露对新发急性心肌梗死影响的前瞻性队列研究[J].中国循环杂志,2020,35(3):246 - 253.Song YJ, Du X, Zheng MY, et al. A prospective cohort study of the effect of cumulative exposure to low density lipoprotein cholesterol on new - onset acute myocardial infarction[J]. Chinese Circulation Journal, 2020, 35(3): 246 - 253.
[ 18 ]庞艳蕾,张惠兰,李向云,等.灰色模型GM(1,1)和ARIMA在拟合全国婴儿、5岁以下儿童死亡率中的应用[J].中国卫生统计,2015,32(3):461 - 463.Pang YL, Zhang HL, Li XY, et al. Application of grey model GM (1,1) and ARIMA in fitting national infant, under - 5 mortality[J]. Chinese Journal of Health Statistics, 2015, 32(3): 461 - 463.
[ 19 ]徐杰茹,陈磊,王冕,等.1990 - 2019年中国女性卵巢癌发病趋势分析与预测[J].现代预防医学,2021,48(19):3457 - 3460, 3470.Xu JR, Chen L, Wang M, et al. Analysis and forecast of the incidence trend of ovarian cancer in Chinese women,1990 - 2019[J]. Modern Preventive Medicine, 2021, 48(19): 3457 - 3460, 3470.
[ 20 ]林淑芳,周银发,张山鹰,等.2010 - 2019年福建省肺结核流行特征及发病预测模型应用[J].中华疾病控制杂志,2021,25(7):768 - 774.Lin SF, Zhou YF, Zhang SY, et al. Analysis of tuberculosis epidemiological characteristics and application of incidence prediction model in Fujian Province from 2010 to 2019[J]. Chinese Journal of Disease Control & Prevention, 2021, 25(7): 768 - 774.
[ 21 ]吴伟,安淑一,郭军巧,等.非线性自回归神经网络在肾综合征出血热流行趋势预测中的应用[J].中华流行病学杂志,2015,36(12):1394 - 1396.Wu W, An SY, Guo JQ, et al. Application of the nonlinear autoregressive neural network in the prediction of the epidemic trend of hemorrhagic fever in renal syndrome[J]. Chinese Journal of Epidemiology, 2015, 36(12): 1394 - 1396.
[ 22 ]马倩倩,何贤英,崔芳芳,等.基于ARIMA与NNAR模型的中国食管癌疾病负担预测[J].中华疾病控制杂志,2021,25(9):1048 - 1053.Ma QQ, He XY, Cui FF, et al. Prediction of disease burden of esophageal cancer in China based on ARIMA and NNAR models[J]. Chinese Journal of Disease Control & Prevention, 2021, 25(9): 1048 - 1053.

备注/Memo

备注/Memo:
基金项目: 重庆市卫生局面上科研项目(2011-2-312)
作者简介: 丁贤彬(1970-),男,副主任医师,研究方向:疾病预防与控制通讯作者: 吕晓燕,E-mail:vivian963852@163.com
更新日期/Last Update: 2022-07-28