我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

2005—2020年江西省肾综合征出血热流行特征分析(PDF)

《现代预防医学》[ISSN:1003-8507/CN:51-1365/R]

期数:
2022年17期
页码:
3073-3078
栏目:
流行病与统计方法
出版日期:
2022-09-15

文章信息/Info

Title:
Epidemiological characteristics of Hemorrhagic Fever with Renal Syndrome in Jiangxi, 2005—2020
作者:
张天琛章承锋夏光辉谢昀潘欢弘
江西省疾病预防控制中心,江西 南昌 330029
Author(s):
ZHANG Tian-chen ZHANG Cheng-feng XIA Guang-hui XIE Yun PAN Huan-hong
Jiangxi Center for Disease Control and Prevention, Nanchang, Jiangxi 330029, China
关键词:
汉坦病毒 肾综合征出血热 群体特征 空间聚集性 时间周期性
Keywords:
Hantavirus Hemorrhagic fever with Renal syndrome Group characteristics Spatial aggregation Temporal periodicity
分类号:
R181.3
DOI:
10.20043/j.cnki.MPM.202203206
文献标识码:
A
摘要:
目的 分析江西省2005—2020年肾综合征出血热的流行特征,为疫情防控提出针对性建议。方法 从中国疾病预防控制信息系统收集病例相关信息,采用描述性流行病学分析、小波频率谱分析和时空扫描分析,分别探索江西省HFRS流行的人群特征、时间周期性及空间聚集性规律。结果 2005—2020年江西省共报告HFRS病例8 596例,发病人群以40~69岁人群为主(4 963例,58%),2010年之后发病率的热点区域集中在60岁以上年龄组。全局及局部小波功率谱显示,HFRS的流行在时间尺度上呈现6个月左右、12个月左右和 36个月左右的周期性(P均小于0.01); 时空扫描分析显示,HFRS在空间上形成以宜春(LLR=3 291,P均小于0.001)、上饶东部(LLR=511,P<0.001)、抚州(LLR=80,P<0.001)为中心的三个聚集区域。结论 江西省今后在HFRS防控工作中应重点关注60岁以上人群,在上饶市和抚州市增设HFRS监测哨点,同时进一步探索近十年来疫情上升的原因,提出因地适宜的防控措施。
Abstract:
Objective To analyse the epidemiological characteristics and its changing patterns of Hemorrhagic Fever with Renal Syndrome(HFRS)in Jiangxi Province from 2005 to 2020, and to propose targeted strategies for future prevention and control. Methods Cases’ information was collected from the Chinese Disease Prevention and Control Information System. Descriptive epidemiological analysis, Wavelet Power Spectrum and Spatial-Temporal Scan analysis were utilized to explore the group properties, temporal periodicity and spatial aggregation of HFRS epidemic in Jiangxi Province respectively. Results The number of HFRS cases in Jiangxi Province from 2005 to 2020 was 8 596, and they were mainly aged from 40 to 69 years old, and the hotspots of incidence after 2010 were concentrated in the over 60 years of age group. The global and local wavelet power spectrum analysis showed that the prevalence of HFRS had a periodicity of about 6 months, 12 months and 36 months on the time scale(P<0.01), and Spatial-Temporal Scan analysis showed that three clustering regions centered on Yichun(LLR=3 291,P<0.001), Easten Shangrao(LLR=511,P<0.001), and Fuzhou city(LLR=80,P<0.001), respectively. Conclusion Based on the results of this research, Jiangxi Province should start the safety evaluation of HFRS vaccine in higher age population as soon as possible, and explore the reasons of increased epidemic in the past 10 years, and set up additional sentinel sites for surveillance of hantavirus and rodents in Shangrao and Fuzhou City.

参考文献/References

[1] Jiang H, Du H, Wang LM, et al. Hemorrhagic fever with renal syndrome: pathogenesis and clinical picture[J]. Frontiers in Cellular and Infection Microbiology, 2016, 6: 1.
[2] Zou LX, Chen MJ, Sun L. Haemorrhagic fever with renal syndrome: literature review and distribution analysis in China[J]. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 2016, 43: 95-100.
[3] 华华,陈淑红,杨明,等.2007-2016年黑龙江省肾综合征出血热疫情分析[J].现代预防医学,2017,44(22):4033-4035, 4041.Hua H, Chen SH, Yang M, et al. Analysis on the prevalence of hemorrhagic fever with renal syndrome inHeilongjiang province from 2007 to 2016[J]. Modern Preventive Medicine, 2017, 44(22): 4033-4035, 4041.
[4] Tian H, Yu P, Bjornstad ON, et al. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome[J]. PLOS Pathogens, 2017, 13(1): e1006198.
[5] Wu G, Xia Z, Wang F, et al. Investigation on risk factors of haemorrhagic fever with renal syndrome(HFRS)in Xuancheng City in Anhui Province, Mainland China[J]. Epidemiology and Infection, 2020, 148: e248.
[6] Wang Q, Yue M, Yao P, et al. Epidemic trend and molecular evolution of HV family in the main hantavirus epidemic areas from 2004 to 2016, in P.R. China[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 584814.
[7] Yang S, Gao Y, Liu X, et al. Spatiotemporal dynamics of hemorrhagic fever with renal syndrome in Jiangxi province, China[J]. Scientific Reports, 2020, 10(1): 14291.
[8] 杨其松.2010—2017年宜春市肾综合征出血热时空分布特征与经济负担研究[D].南昌:南昌大学,2019.Yang JS. Study on spatio-temporal distribution and economic burden of hemorrhagic fever with renal syndrome inYichun City from 2010 to 2017[D]. Nanchang: Nanchang University, 2019.
[9] 刘晓青,张天琛,谢昀,等.2009—2013年江西省宜春市肾综合症出血热流行病学研究[J].中华疾病控制杂志,2016,20(3):4.Liu XQ, Zhang TC, Xie Y, et al. An epidemiological study on HFRS inYichun City from 2009 to 2013[J]. Chinese Journal of Disease Control & Prevention, 2016, 20(3): 4.
[10] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47: 203-221.
[11] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory-Part II: Sampling theory and complex waves[J]. Geophysics, 1982, 47: 222-236.
[12] Kulldorff M, Heffernan R, Hartman J, et al. A space-time permutation scan statistic for disease outbreak detection[J]. PLOS Medicine, 2005, 2(3): e59.
[13] Shang C, Sun Y, Yin Q, et al. Hemorrhagic fever with renal syndrome - Liaoning province, China, 1999-2018[J]. China CDC Weekly, 2020, 2(20): 350-354.
[14] Zhang C, Fu X, Zhang Y, et al. Epidemiological and time series analysis of haemorrhagic fever with renal syndrome from 2004 to 2017 in Shandong Province, China[J]. Scientific Reports, 2019, 9(1): 14644.
[15] Wei Y, Wang Y, Li X, et al. Meteorological factors and risk of hemorrhagic fever with renal syndrome in Guangzhou, southern China, 2006-2015[J]. PLOS Neglected Tropical Diseases, 2018, 12(6): e0006604.
[16] Xiao J, Dai J, Hu J, et al. Co-benefits of nonpharmaceutical intervention against COVID-19 on infectious diseases in China: A large population-based observational study[J]. The Lancet regional health. Western Pacific, 2021, 17: 100282.
[17] 朱妮,刘峰,邱琳,等.2011—2015年陕西省肾综合征出血热时空聚集性分析[J].现代预防医学,2017,44(9):1537-1540, 1552.Zhu N, Liu F, Qiu L, et al. Temporal-spatial clustering of hemorrhagic fever with renalsyndrome in Shanxi Province,2011-2015[J]. Modern Preventive Medicine, 2017, 44(9):1537-1540, 1552.
[18] Tian HY, Yu PB, Luis AD, et al. Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005-2012[J]. PLOS Neglected Tropical Diseases, 2015, 9(3): e0003530.
[19] He J, Christakos G, Wu J, et al. Spatiotemporal variation of the association between climate dynamics and HFRS outbreaks in Eastern China during 2005-2016 and its geographic determinants[J]. PLOS Neglected Tropical Diseases, 2018, 12(6): e0006554.
[20] Zhao Q, Yang X, Liu H, et al. Effects of climate factors on hemorrhagic fever with renal syndrome in Changchun, 2013 to 2017[J]. Medicine, 2019, 98(9): e14640.
[21] Sipari S, Khalil H, Magnusson M, et al. Climate change accelerates winter transmission of a zoonotic pathogen[J]. Ambio, 2022, 51(3): 508-517.
[22] Bai XH, Peng C, Jiang T, et al. Distribution of geographical scale, data aggregation unit and period in the correlation analysis between temperature and incidence of HFRS in mainland China: A systematic review of 27 ecological studies[J]. PLOS Neglected Tropical Diseases, 2019, 13(8): e0007688.
[23] Ke G, Hu Y, Huang X, et al. Epidemiological analysis of hemorrhagic fever with renal syndrome in China with the seasonal-trend decomposition method and the exponential smoothing model[J]. Scientific Reports, 2016, 6: 39350.
[24] Grenfell BT, Bj?nstad ON, Kappey J. Travelling waves and spatial hierarchies in measles epidemics[J]. Nature, 2001, 414(6865): 716-723.
[25] Cazelles B, Chavez M, Mcmichael AJ, et al. Nonstationary influence of El Ni? on the synchronous dengue epidemics in Thailand[J]. PLOS Medicine, 2005, 2(4): e106.
[26] Khalfaoui R, Nammouri H, Labidi O, et al. Is the COVID-19 vaccine effective on the US financial market?[J]. Public Health, 2021, 198: 177-179.
[27] Cazelles B, Chavez M, De Magny GC, et al. Time-dependent spectral analysis of epidemiological time-series with wavelets[J]. Journal of the Royal Society Interface, 2007, 4(15): 625-636.
[28] Zhang R, Mao Z, Yang J, et al. The changing epidemiology of hemorrhagic fever with renal syndrome in Southeastern China during 1963-2020: A retrospective analysis of surveillance data[J]. PLOS Neglected Tropical Diseases, 2021, 15(8): e0009673.
[29] Xiao Y, Li Y, Li Y, et al. Estimating the Long-Term epidemiological trends and seasonality of hemorrhagic fever with renal syndrome in China[J]. Infection and Drug Resistance, 2021, 14: 3849-3862.
[30] Zhao Y, Ge L, Zhou Y, et al. A new Seasonal Difference Space-Time Autoregressive Integrated Moving Average(SD-STARIMA)model and spatiotemporal trend prediction analysis for Hemorrhagic Fever with Renal Syndrome(HFRS)[J]. PLOS One, 2018, 13(11): e0207518.
[31] Zou LX, Sun L. Analysis of hemorrhagic fever with renal syndrome using wavelet tools in mainland China, 2004-2019[J]. Frontiers in Public Health, 2020, 8: 571984.
[32] Xiao H, Tong X, Gao L, et al. Spatial heterogeneity of hemorrhagic fever with renal syndrome is driven by environmental factors and rodent community composition[J]. PLoS Neglected Tropical Diseases, 2018, 12(10): e0006881.
[33] Wu H, Wang X, Xue M, et al. Spatial-temporal characteristics and the epidemiology of haemorrhagic fever with renal syndrome from 2007 to 2016 in Zhejiang Province, China[J]. Scientific Reports, 2018, 8(1): 10244.
[34] 宋宁娟,谢昀,丁晟,等.江西省2013-2018年肾综合征出血热空间自相关分析[J].中华疾病控制杂志,2020,24(8):5.Song NJ, Xie Y, Ding S, et al. Analysis of spatial autocorrelation of hemorrhagic fever with renal syndrome in Jiangxi Province from 2013 to 2018[J].Chinese Journal of Disease Control & Prevention, 2020, 24(8): 5.
[35] 尚翠.中国汉坦病毒分子流行病学特征研究[D].北京:中国疾病预防控制中心,2020.Shang C. Study on molecular epidemiological characteristic of hantavirus inChina[D]. Beijing: Chinese Center for Disease Control and Prevention, 2020.
[36] Xiao H, Lin X, Gao L, et al. Ecology and geography of hemorrhagic fever with renal syndrome in Changsha, China[J]. BMC Infectious Diseases, 2013, 13: 305.
[37] Michishita R, Jiang Z, Xu B. Monitoring two decades of urbanization in the Poyang Lake area,China through spectral unmixing[J]. Remote Sensing of Environment, 2012, 117: 3-18.

备注/Memo

备注/Memo:
基金项目:江西省青年科学基金资助项目(20171BAB215051); 江西省卫生计生委科技计划(20186012)
作者简介:张天琛(1987—),男,博士,研究方向:传染病流行病学
通讯作者:潘欢弘; E-mail:jxcdccfsphh@126.com
更新日期/Last Update: 2022-09-15